Non surgical treatment of Intraabdominal infection

PF Laterre, Department of CCM
St Luc university Hospital
UCLouvain
Brussels

Management of Intraabdominal infections

- Source control remains the cornerstone
- Timing of adequate antimicrobial therapy and source control have an impact on outcome
- Too many studies orienting the guidelines have included patients with low to moderate severity

RESEARCH Open Access

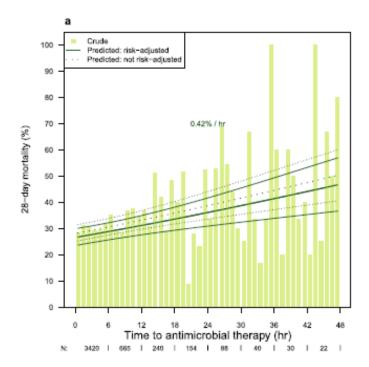
Adverse effects of delayed antimicrobial treatment and surgical source control in adults with sepsis: results of a planned secondary analysis of a cluster-randomized controlled trial

Hendrik Rüddel^{1,2}, Daniel O. Thomas-Rüddel^{1,2}, Konrad Reinhart^{3,4}, Friedhelm Bach⁵, Herwig Gerlach⁶, Matthias Lindner⁷, John C. Marshall⁸, Philipp Simon⁹, Manfred Weiss¹⁰, Frank Bloos^{1,2}, Daniel Schwarzkopf^{1,2,11} ond the MEDUSA study group

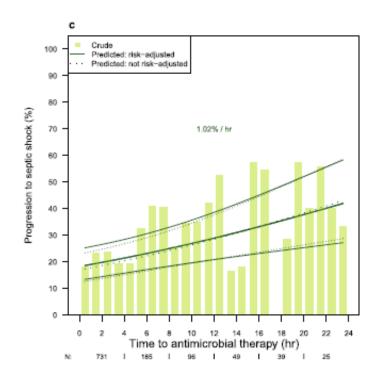
Rüddel et al. Critical Care (2022) 26:51 https://doi.org/10.1186/s13054-022-03901-9

Table 1 Baseline characteristics of patients stratified by timing of start of antimicrobial treatment

Variable	No. of patients	All patients (N = 4792)	Timing of antimicrobi	antimicrobial therapy	
	with complete data		Within 1 h (N=1311)	More than 1 h (N = 3481)	p value
Time to beginning of antimicrobial therapy (minutes)	4792	150 [60, 378.5]	30 [15, 50]	240 [120, 518]	-
Age	4791	70 [59, 77]	71 [60, 77]	70 [59, 77]	0.435
Sex: male	4792	2986 (62.3%)	800 (61%)	2186 (62.8%)	0.27
Origin of infection: Community acquired	4791	2273 (47.4%)	779 (59.4%)	1494 (42.9%)	≤0.001
Nosocomial (ICU/IMC)		1112 (23.2%)	208 (15.9%)	904 (26%)	
Nosocomial (general ward)		1406 (29.3%)	324 (24.7%)	1082 (31.1%)	
Location at onset of sepsis: ICU	4792	2233 (46.6%)	559 (42.6%)	1674 (48.1%)	≤0.001
Emergency department		948 (19.8%)	333 (25.4%)	615 (17.7%)	
Operating room		428 (8.9%)	167 (12.7%)	261 (7.5%)	
General ward		692 (14.4%)	127 (9.7%)	565 (16.2%)	
Ambulance service		211 (4.4%)	48 (3.7%)	163 (4.7%)	
IMC		280 (5.8%)	77 (5.9%)	203 (5.8%)	
Focus of infection: respiratory	4780	2057 (4396)	510 (38.0%)	1547 (44 5%)	_0.001
Focus of infection: abdominal	4789	1657 (34.6%)	464 (35.4%)	1193 (34.3%)	0.474
Focus of infection: urogenital	4789	695 (14.5%)	209 (16%)	486 (14%)	0.089
Focus of infection: bones/soft tissue/ wound	4789	531 (11.1%)	154 (11.8%)	377 (10.8%)	0.38
Focus of infection: other/unknown	4789	644 (13.4%)	161 (12.3%)	483 (13.9%)	0.154
Infection microbiologically confirmed	4781	3514 (73.5%)	965 (73.7%)	2549 (73.4%)	0.854
Bacteremia: Gram positive	4754	806 (17%)	223 (17.2%)	583 (16.9%)	0.005
Gram negative		712 (15%)	226 (17.4%)	486 (14.1%)	
Other/several		166 (3.5%)	41 (3.2%)	125 (3.6%)	
No pathogen detected		2281 (48%)	627 (48.3%)	1654 (47.9%)	
No blood culture taken		789 (16.6%)	182 (14%)	607 (17.6%)	
Vasopressor use within 12 h after first organ dysfunction	4781	3595 (75.2%)	982 (75.2%)	2613 (75.2%)	1


Descriptive statistics given as N (%) or median [interquartile range]. p values obtained by Mann-Whitney-U test, Fisher's exact test or Pearson's Chi-squared test, as appropriate

ICU: intensive care unit; IMC: intermediate care unit


RESEARCH Open Access

Adverse effects of delayed antimicrobial treatment and surgical source control in adults with sepsis: results of a planned secondary analysis of a cluster-randomized controlled trial

Hendrik Rüddel^{1,2}, Daniel O. Thomas-Rüddel^{1,2}, Konrad Reinhart^{3,4}, Friedhelm Bach⁵, Herwig Gerlach⁶, Matthias Lindner⁷, John C. Marshall⁸, Philipp Simon⁹, Manfred Weiss¹⁰, Frank Bloos^{1,2}, Daniel Schwarzkopf^{1,2,11} ond the MEDUSA study group

Rüddel et al. Critical Care (2022) 26:51 https://doi.org/10.1186/s13054-022-03901-9

RESEARCH Open Access

Adverse effects of delayed antimicrobial treatment and surgical source control in adults with sepsis: results of a planned secondary analysis of a cluster-randomized controlled trial

Hendrik Rüddel^{1,2}, Daniel O. Thomas-Rüddel^{1,2}, Konrad Reinhart^{3,4}, Friedhelm Bach⁵, Herwig Gerlach⁶, Matthias Lindner⁷, John C. Marshall⁸, Philipp Simon⁹, Manfred Weiss¹⁰, Frank Bloos^{1,2}, Daniel Schwarzkopf^{1,2,11} ond the MEDUSA study group

Rüddel et al. Critical Care (2022) 26:51 https://doi.org/10.1186/s13054-022-03901-9

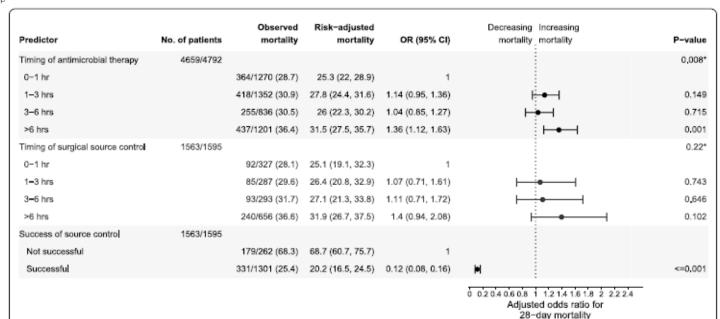
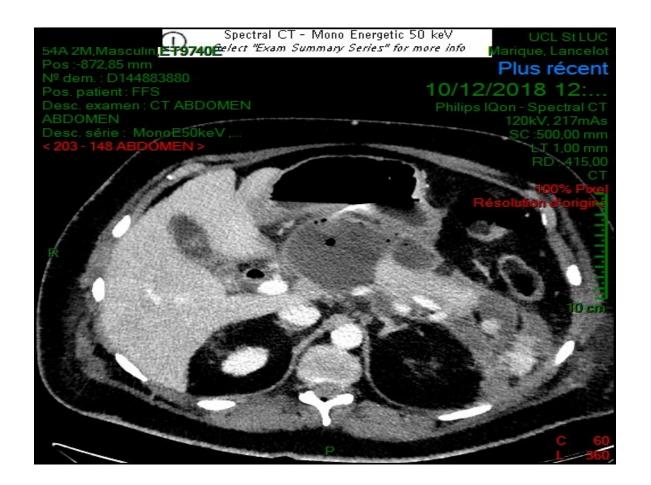
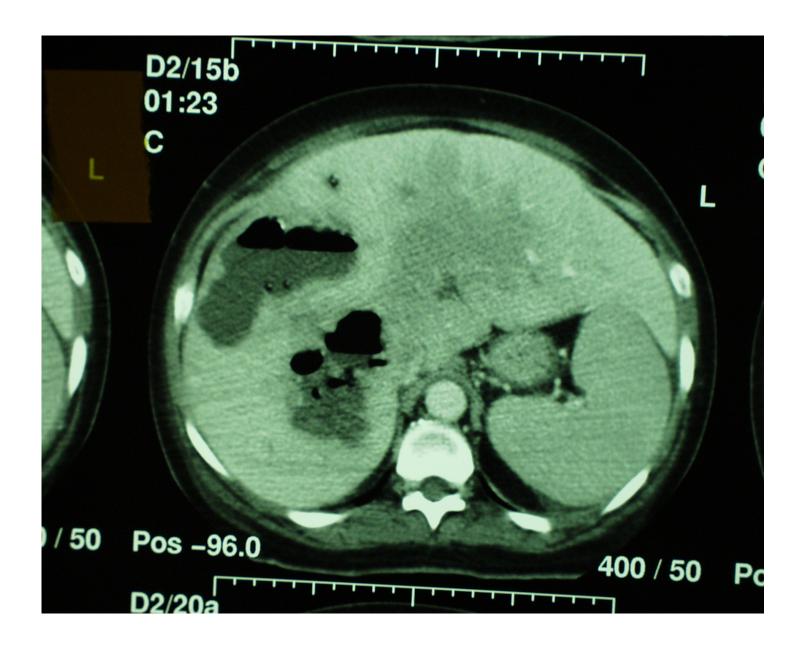
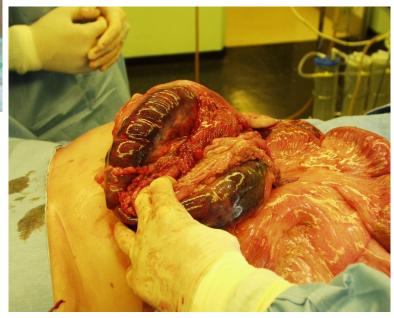




Fig. 2 Effects of antimicrobial therapy and of surgical source control on 28-day mortality. Effects were tested in a logistic hierarchical linear model with a random intercept adjusting for covariates. Risk-adjusted mortality estimates were obtained as predictive margins that were calculated for the average of continuous variables and for the most common category of categorical variables. No. of patients gives the number of cases with complete data compared to the total number of patients suitable for the respective analysis. * marks the p-value of the overall test of significance for the categorical variables on timing conducted by a likelihood-ratio test, while the other p-values give the results of tests of single categories against the reference category. Models adjusted for the following covariates: age and gender, origin of infection, location of the patient at the onset of sepsis, focus of infection, microbiological confirmation of infection, study phase (trial vs. surveillance phase), and group the hospital was randomized to (intervention vs. control)

Source control in IAI?


- Diverticulitis?
- Appendicitis ? (conservative ?)
- WON in Pancreatitis ? (delayed ?)
- Liver Abscess ? (delayed?)
- Decompartment, decompression..

Bowel necrosis and « ischemia-translocation » issues ? Role of antimicrobials alone

SAP, surgery and secondary GI-tract fistula?

Antimicrobial therapy for IAI?

Insufficient β -lactam concentrations in the early phase of severe sepsis and septic shock

Fabio Silvio Taccone¹, Pierre-François Laterre², Thierry Dugernier³, Herbert Spapen⁴, Isabelle Delattre⁵, Xavier Wittebole², Daniel De Backer¹, Brice Layeux⁶, Pierre Wallemacq⁵, Jean-Louis Vincent¹ and Frédérique Jacobs*⁶

Taccone et al. Critical Care 2010, **14**:R126 http://ccforum.com/content/14/4/R126

Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock

Fabio Silvio Taccone¹, Pierre-François Laterre², Herbert Spapen³, Thierry Dugernier⁴, Isabelle Delattre⁵, Brice Layeux⁶, Daniel De Backer¹, Xavier Wittebole², Pierre Wallemacq⁵, Jean-Louis Vincent¹ and Frédérique Jacobs*⁶

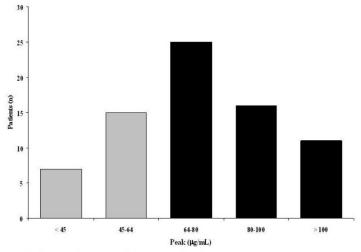
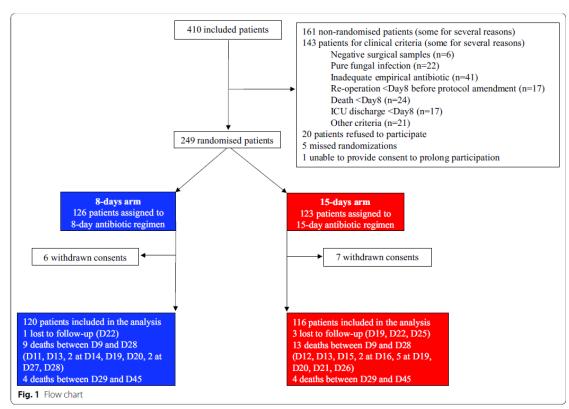



Figure 2 Distribution of peak concentrations. Black bars, peak >64 µg/ml; gray bars, peak <64 µg/ml.

Taccone et al. Critical Care 2010, **14**:R53 http://ccforum.com/content/14/2/R53

Philippe Montravers^{1,18*}, Florence Tubach², Thomas Lescot³, Benoit Veber⁴, Marina Esposito-Farèse⁵, Philippe Seguin⁶, Catherine Paugam⁷, Alain Lepape⁸, Claude Meistelman⁹, Joel Cousson¹⁰, Antoine Tesniere¹¹, Gaetan Plantefeve¹², Gilles Blasco¹³, Karim Asehnoune¹⁴, Samir Jaber¹⁵, Sigismond Lasocki¹⁶, Herve Dupont¹⁷ and For the DURAPOP Trial Group

Intensive Care Med (2018) 44:300-310

Philippe Montravers^{1,18*}, Florence Tubach², Thomas Lescot³, Benoit Veber⁴, Marina Esposito-Farèse⁵, Philippe Seguin⁶, Catherine Paugam⁷, Alain Lepape⁸, Claude Meistelman⁹, Joel Cousson¹⁰, Antoine Tesniere¹¹, Gaetan Plantefeve¹², Gilles Blasco¹³, Karim Asehnoune¹⁴, Samir Jaber¹⁵, Sigismond Lasocki¹⁶, Herve Dupont¹⁷ and For the DURAPOP Trial Group

Intensive Care Med (2018) 44:300–310

Table 1 Demographic and clinical characteristics and antibiotic regimens of the study patients according to treatment arm

Variable	Missing data Control/experimental arms	15-day arm (n = 116)	8-day arm (n = 120)
Characteristics on the day of enrolment (Day 0)			
Age, years, median [IQR]	0/0	66-5 [59–77]	66 [57–76]
Patients aged > 80 years, n (%)	0/0	18 (16)	12 (10)
Male sex, n (%)	0/0	70 (60)	82 (68)
No underlying disease, n (%)	0/1	60 (52)	72 (61)
Charlson score, median [IQR]	0/0	5 [3–7]	4 [2-7]
Body mass index, kg/m², median [IQR]	9/10	27.3 [23–31.6]	28.1 [24-33]
Body mass index > 35 kg/m², n (%)	9/10	16 (15)	20 (18)
SAPS II score, median [IQR]	10/6	45 [34–51.8]	44.5 [35-56.8]
SAPS II score > 40, n (%)	10/6	63 (59)	73 (64)
SOFA score, median [IQR]	16/11	6 [3–8]	7 [4–9]
Mechanical ventilation, n (%)	16/11	83 (74)	96 (84)
Vasoactive agents, n (%)	16/11	79 (71)	78 (68)
Sedation, n (%)	16/11	77 (71)	91 (81)
Renal replacement therapy, n (%)	16/11	11 (10)	13 (11)
Source of contamination, n (%)			
Colon or rectum, n (%)	0/0	49 (42)	57 (48)
Small bowel, n (%)	0/0	37 (32)	39 (32)
Gastroduodenal, n (%)	0/0	15 (13)	13 (11)
Perforation, n (%)	0/1	61 (53)	53 (45)
Ischaemia/bowel necrosis, n (%)	0/1	17 (15)	19 (16)
Abscess, n (%)	0/1	23 (20)	17 (14)

Philippe Montravers^{1,18*}, Florence Tubach², Thomas Lescot³, Benoit Veber⁴, Marina Esposito-Farèse⁵, Philippe Seguin⁶, Catherine Paugam⁷, Alain Lepape⁸, Claude Meistelman⁹, Joel Cousson¹⁰, Antoine Tesniere¹¹, Gaetan Plantefeve¹², Gilles Blasco¹³, Karim Asehnoune¹⁴, Samir Jaber¹⁵, Sigismond Lasocki¹⁶, Herve Dupont¹⁷ and For the DURAPOP Trial Group

Intensive Care Med (2018) 44:300–310

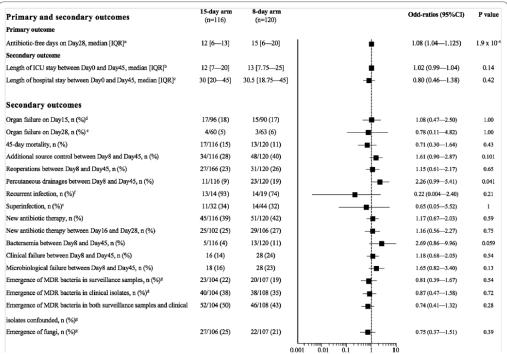


Fig. 2 Primary and secondary outcomes (two-sided analyses on ITT population). ^aDeceased patients have 0 days free of antibiotics; ^bdeceased patients leave the ICU on the day of death; ^damong patients still hospitalised at day 15; ^eamong patients still hospitalised at day 28; ^famong those who underwent reoperation or additional drainage; ^gamong those who underwent surveillance samples or additional clinical isolates. Clinical and microbiological failures: see definitions in "Materials and methods", *IQR* interquartile range, *ICU* intensive care unit, *MDR bacteria* multidrug-resistant bacteria

ORIGINAL ARTICLE

Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection

R.G. Sawyer, J.A. Claridge, A.B. Nathens, O.D. Rotstein, T.M. Duane, H.L. Evans, C.H. Cook, P.J. O'Neill, J.E. Mazuski, R. Askari, M.A. Wilson, L.M. Napolitano, N. Namias, P.R. Miller, E.P. Dellinger, C.M. Watson, R. Coimbra, D.L. Dent, S.F. Lowry, * C.S. Cocanour, M.A. West, K.L. Banton, W.G. Cheadle, P.A. Lipsett, C.A. Guidry, and K. Popovsky, for the STOP-IT Trial Investigators†

N Engl J Med 2015;372:1996-2005. DOI: 10.1056/NEJMoa1411162

Table 1. Baseline Demographic and Clinical Characteristics, According to Study Group.*				
Variable	Control Group (N = 260)	Experimental Group (N = 258)		
Age — yr	52.2±1.0	52.2±1.0		
Male sex — no. (%)	145 (55.8)	144 (55.8)		
Race or ethnic group — no. (%)†				
White	208 (80.0)	196 (76.0)		
Black	43 (16.5)	51 (19.8)		
Asian	5 (1.9)	6 (2.3)		
American Indian or Alaskan Native	2 (0.8)	1 (0.4)		
Hispanic — no. (%)	20 (7.7)	15 (5.8)		
Other	2 (0.8)	4 (1.6)		
Characteristics of index infection				
APACHE II score‡	9.9±0.4	10.3±0.4		
Maximum white-cell count — per mm ³	15,600±0.4	$17,100\pm0.7$		
Maximum body temperature — °C	37.8±0.1	37.7±0.1		
Organ of origin — no. (%)				
Colon or rectum	80 (30.8)	97 (37.6)		
Appendix	34 (13.1)	39 (15.1)		
Small bowel	31 (11.9)	42 (16.3)		
Source-control procedure — no. (%)				
Percutaneous drainage	86 (33.1)	86 (33.3)		
Resection and anastomosis or closure	69 (26.5)	64 (24.8)		
Surgical drainage only	55 (21.2)	54 (20.9)		
Resection and proximal diversion	27 (10.4)	37 (14.3)		
Simple closure	20 (7.7)	12 (4.7)		
Surgical drainage and diversion	3 (1.2)	4 (1.6)		

ORIGINAL ARTICLE

Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection

R.G. Sawyer, J.A. Claridge, A.B. Nathens, O.D. Rotstein, T.M. Duane, H.L. Evans, C.H. Cook, P.J. O'Neill, J.E. Mazuski, R. Askari, M.A. Wilson, L.M. Napolitano, N. Namias, P.R. Miller, E.P. Dellinger, C.M. Watson, R. Coimbra, D.L. Dent, S.F. Lowry, * C.S. Cocanour, M.A. West, K.L. Banton, W.G. Cheadle, P.A. Lipsett, C.A. Guidry, and K. Popovsky, for the STOP-IT Trial Investigators †

Table 2. Primary and Major Secondary Outcomes.* Control Experimental Group Group Variable (N = 260)(N = 257)P Value Primary outcome: surgical-site infection, recurrent intraabdominal 58 (22.3) 56 (21.8) 0.92 infection, or death — no. (%) Surgical-site infection 23 (8.8) 0.43 17 (6.6) Recurrent intraabdominal infection 36 (13.8) 40 (15.6) 0.67 Death 2 (0.8) 3 (1.2) 0.99 Time to event — no. of days after index source-control procedure Diagnosis of surgical-site infection 15.1±0.6 8.8 ± 0.4 < 0.001 Diagnosis of recurrent intraabdominal infection 15.1±0.5 10.8 ± 0.4 < 0.001 Death 19.0±1.0 18.5±0.5 0.66 Secondary outcome Surgical-site infection or recurrent intraabdominal infection with 9 (3.5) 6 (2.3) 0.62 resistant pathogen — no. (%)

N Engl J Med 2015;372:1996-2005. DOI: 10.1056/NEJMoa1411162

Duration of outcome — days			
Antimicrobial therapy for index infection			<0.001
Median	8	4	
Interquartile range	5–10	4–5	
Antimicrobial-free days at 30 days			< 0.001
Median	21	25	
Interquartile range	18–25	21–26	
Hospitalization after index procedure			0.48
Median	7	7	
Interquartile range	4–11	4–11	
Hospital-free days at 30 days			0.22
Median	23	22	
Interquartile range	18–26	16–26	

ORIGINAL ARTICLE

Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection

R.G. Sawyer, J.A. Claridge, A.B. Nathens, O.D. Rotstein, T.M. Duane, H.L. Evans, C.H. Cook, P.J. O'Neill, J.E. Mazuski, R. Askari, M.A. Wilson, L.M. Napolitano, N. Namias, P.R. Miller, E.P. Dellinger, C.M. Watson, R. Coimbra, D.L. Dent, S.F. Lowry, * C.S. Cocanour, M.A. West, K.L. Banton, W.G. Cheadle, P.A. Lipsett, C.A. Guidry, and K. Popovsky, for the STOP-IT Trial Investigators†

N Engl J Med 2015;372:1996-2005. DOI: 10.1056/NEJMoa1411162

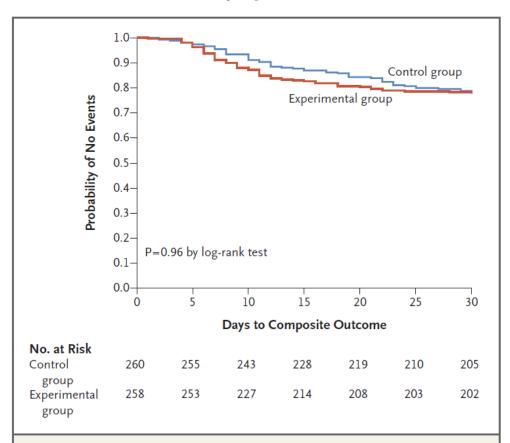


Figure 2. Kaplan-Meier Time-to-Event Curves for the Composite Primary Outcome, According to Treatment Group.

The composite primary outcome was surgical-site infection, recurrent intraabdominal infection, or death.

Shahaf Shay¹ · Amram Kupietzky¹ · Daniel Joshua Weiss¹ · Roi Dover¹ · Nachum Emil Eliezer Lourie¹ · Tzlil Mordechay-Heyn¹ · Haggi Mazeh¹ · Ido Mizrahi¹

World J Surg (2022) 46:69–75 https://doi.org/10.1007/s00268-021-06330-x

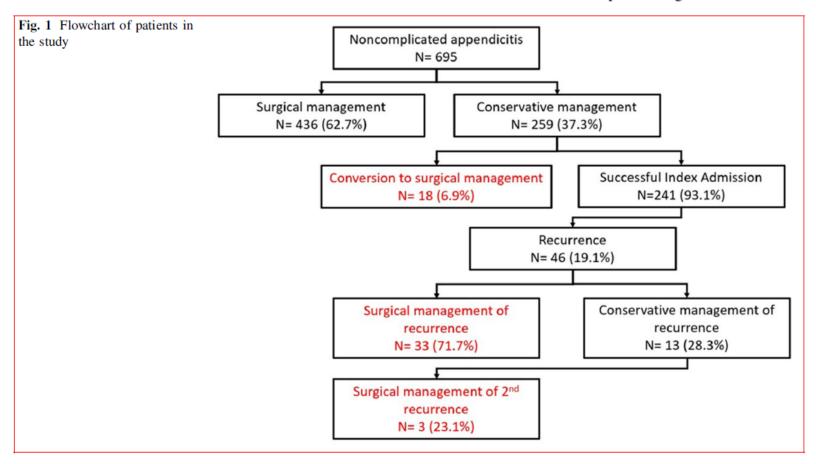

Methods Patients admitted to our institution between March 2016 and October 2019 with non-complicated AA were grouped according to their initial management: non-operative versus surgical. Our unique protocol for non-operative management includes: pain < 3 days; afebrile upon admission; non-gravid; WBC $<15,000 (\times 10^9/L)$; CRP < 5 mg/dl; appendix diameter < 1 cm; no appendicolith on imaging; no prior episode of AA; no history of Inflammatory Bowel Disease; no evidence of peritonitis on physical examination. The primary outcome measured was failure of non-surgical management during the index admission. Secondary outcomes included recurrence rate, readmissions, complications, length of antibiotic treatment and length of stay (LOS).

Table 1 Comparison of patient demographics and clinical presentation

Characteristics	Conservative treatment $(N = 259)$	Surgical treatment $(N = 436)$	p value
Age (years)	21.3 ± 13.4	24.4 ± 16.8	0.006
Gender			
Female	128 (47.5%)	161 (37.2%)	0.007
Male	141 (52.5%)	277 (62.8%)	
Fever at home	31 (12.0%)	80 (18.2%)	0.026
Length of pain prior to admission (hours)	33.1 ± 45.2	27.3 ± 28.8	0.04
Fever at admission (celsius)	36.7 ± 0.6	36.8 ± 0.7	0.20
White blood count ($\times 10^9/L$)	11.2 ± 3.9	14.6 ± 4.7	< 0.001
CRP (mg/dl)	2.1 ± 3.6	3.9 ± 6.0	< 0.001
Diagnostic imaging modality			
Ultrasound (US)	161 (59.9%)	237 (54.4%)	0.23
Computed tomography (CT)	97 (36.1%)	185 (42.2%)	
Both	11 (4.1%)	14 (3.2%)	
Radiological findings			
Largest appendix diameter (mm)	8.2 ± 1.9	10.8 ± 3.2	< 0.001
Appendicolith	11 (4.2%)	130 (29.8%)	< 0.001

Shahaf Shay¹ · Amram Kupietzky¹ · Daniel Joshua Weiss¹ · Roi Dover¹ · Nachum Emil Eliezer Lourie¹ · Tzlil Mordechay-Heyn¹ · Haggi Mazeh¹ · Ido Mizrahi¹

World J Surg (2022) 46:69–75 https://doi.org/10.1007/s00268-021-06330-x

Shahaf Shay¹ · Amram Kupietzky¹ © · Daniel Joshua Weiss¹ · Roi Dover¹ · Nachum Emil Eliezer Lourie¹ · Tzlil Mordechay-Heyn¹ · Haggi Mazeh¹ · Ido Mizrahi¹

World J Surg (2022) 46:69–75 https://doi.org/10.1007/s00268-021-06330-x

Table 2 Index admission data

Characteristics	Conservative treatment $(N = 259)$	Surgical treatment $(N = 436)$	p value
IV antibiotic treatment (days)	2.9 ± 1.2	2.4 ± 1.8	< 0.001
PO antibiotic treatment at home (days)	5.3 ± 1.8	0.4 ± 1.4	< 0.001
Total antibiotic treatment (days)	7.9 ± 2.5	2.8 ± 2.7	< 0.001
LOS (days)	3.5 ± 1.1	3.7 ± 1.8	0.11

Shahaf Shay¹ · Amram Kupietzky¹ © · Daniel Joshua Weiss¹ · Roi Dover¹ · Nachum Emil Eliezer Lourie¹ · Tzlil Mordechay-Heyn¹ · Haggi Mazeh¹ · Ido Mizrahi¹

World J Surg (2022) 46:69–75 https://doi.org/10.1007/s00268-021-06330-x

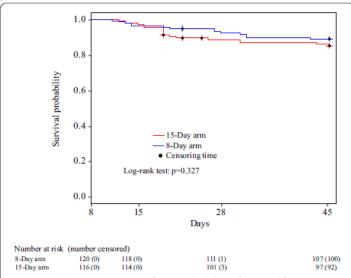
Table 4 Comparison of successful versus unsuccessful conservative treatment characteristics

Characteristics	Successful treatment $(n = 195)$	Unsuccessful treatment $(n = 64)$	p value
Age (years)	21.6 ± 13.8	18.8 ± 10.8	0.10
Gender			
Female	103 (52.8%)	22 (34.4%)	0.10
Male	92 (47.2%)	42 (65.6%)	
Fever at home	22 (11.3%)	9 (14.1%)	0.55
Length of pain at home (hours)	35.8 ± 43.9	28.7 ± 43.0	0.32
Fever at admission (celsius)	36.7 ± 0.6	36.8 ± 0.6	0.37
White blood count ($\times 10^9/L$)	11.0 ± 4.1	11.8 ± 3.5	0.16
CRP (mg/dl)	1.7 ± 2.9	3.0 ± 4.9	0.05
Radiological findings			
Largest appendix diameter (mm)	8.1 ± 1.9	8.5 ± 1.9	0.24
Appendicolith	7 (3.6%)	4 (6.3%)	0.36

Intensive Care Med (2018) 44:300–310

Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: the DURAPOP randomised clinical trial

Philippe Montravers^{1,18*}, Florence Tubach², Thomas Lescot³, Benoit Veber⁴, Marina Esposito-Farèse⁵, Philippe Seguin⁶, Catherine Paugam⁷, Alain Lepape⁸, Claude Meistelman⁹, Joel Cousson¹⁰, Antoine Tesniere¹¹, Gaetan Plantefeve¹², Gilles Blasco¹³, Karim Asehnoune¹⁴, Samir Jaber¹⁵, Sigismond Lasocki¹⁶, Herve Dupont¹⁷ and For the DURAPOP Trial Group


Table 1 Demographic and clinical characteristics and antibiotic regimens of the study patients according to treatment arm

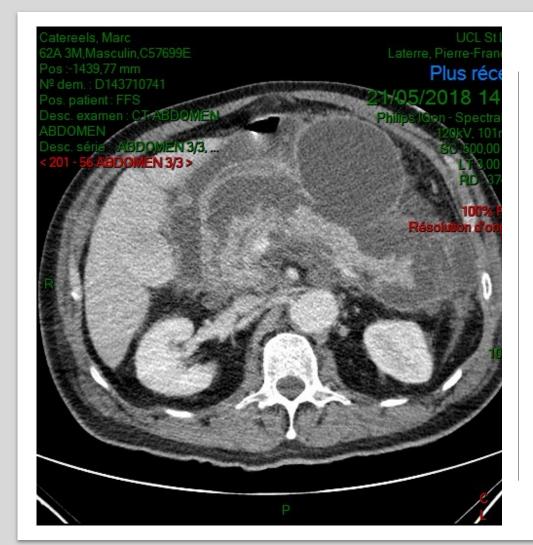
Variable	Missing data Control/experimental arms	15-day arm (n = 116)	8-day arm (n = 120)
Characteristics on the day of enrolment (Day 0)			
Age, years, median [IQR]	0/0	66.5 [59–77]	66 [57–76]
Patients aged > 80 years, n (%)	0/0	18 (16)	12 (10)
Male sex, n (%)	0/0	70 (60)	82 (68)
No underlying disease, n (%)	0/1	60 (52)	72 (61)
Charlson score, median [IQR]	0/0	5 [3–7]	4 [2-7]
Body mass index, kg/m², median [IQR]	9/10	27.3 [23–31.6]	28.1 [24–33]
Body mass index > 35 kg/m², n (%)	9/10	16 (15)	20 (18)
SAPS II score, median [IQR]	10/6	45 [34–51.8]	44.5 [35–56.8]
SAPS II score > 40, n (%)	10/6	63 (59)	73 (64)
SOFA score, median [IQR]	16/11	6 [3–8]	7 [4–9]
Mechanical ventilation, n (%)	16/11	83 (74)	96 (84)
Vasoactive agents, n (%)	16/11	79 (71)	78 (68)
Sedation, n (%)	16/11	77 (71)	91 (81)
Renal replacement therapy, n (%)	16/11	11 (10)	13 (11)
Source of contamination, n (%)			
Colon or rectum, n (%)	0/0	49 (42)	57 (48)
Small bowel, n (%)	0/0	37 (32)	39 (32)
Gastroduodenal, n (%)	0/0	15 (13)	13 (11)
Perforation, n (%)	0/1	61 (53)	53 (45)
Ischaemia/bowel necrosis, n (%)	0/1	17 (15)	19 (16)
Abscess, n (%)	0/1	23 (20)	17 (14)

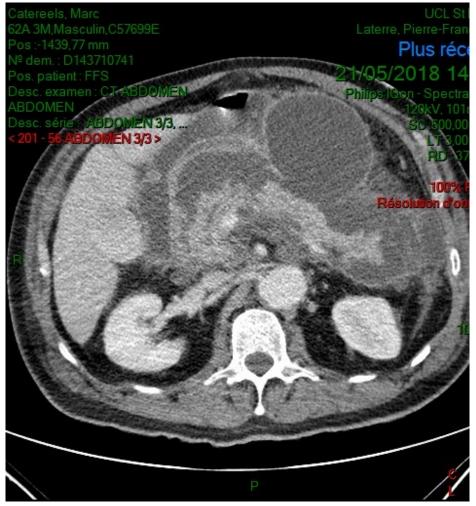
Philippe Montravers^{1,18*}, Florence Tubach², Thomas Lescot³, Benoit Veber⁴, Marina Esposito-Farèse⁵, Philippe Seguin⁶, Catherine Paugam⁷, Alain Lepape⁸, Claude Meistelman⁹, Joel Cousson¹⁰, Antoine Tesniere¹¹, Gaetan Plantefeve¹², Gilles Blasco¹³, Karim Asehnoune¹⁴, Samir Jaber¹⁵, Sigismond Lasocki¹⁶, Herve Dupont¹⁷ and For the DURAPOP Trial Group

Primary and secondary outcomes	15-day arm (n=116)	8-day arm (n=120)		Odd-ratios (95%CI)	P value
Primary outcome					
Antibiotic-free days on Day28, median [IQR] ^a	12 [6—13]	15 [6—20]	•	1.08 (1.04-1.125)	1.9 x 10 ⁻⁴
Secondary outcome					
Length of ICU stay between Day0 and Day45, median [IQR]b	12 [7—20]	13 [7.75—25]	•	1.02 (0.99—1.04)	0.14
Length of hospital stay between Day0 and Day45, median [IQR] ^c	30 [20—45]	30.5 [18.75—45]	+	0.80 (0.46—1.38)	0.42
Secondary outcomes					
Organ failure on Day15, n (%)d	17/96 (18)	15/90 (17)	-	1.08 (0.47—2.50)	1.00
Organ failure on Day28, n (%) e	4/60 (5)	3/63 (6)		0.78 (0.11—4.82)	1.00
45-day mortality, n (%)	17/116 (15)	13/120 (11)	- ■	0.71 (0.30—1.64)	0.43

Intensive Care Med (2018) 44:300–310

Fig. 3 Kaplan-Meier curves of the probability of survival from randomisation to day 45 according to treatment arm


Patients with Complicated Intra-Abdominal Infection Presenting with Sepsis Do Not Require Longer Duration of Antimicrobial Therapy


CrossMark

Rishi Rattan, MD, Casey J Allen, MD, Robert G Sawyer, MD, Reza Askari, MD, Kaysie L Banton, MD, Jeffrey A Claridge, MD, MS, FACS, Christine S Cocanour, MD, FACS, FCCM, Raul Coimbra, MD, PhD, FACS, Charles H Cook, MD, FACS, FCCM, Joseph Cuschieri, MD, FACS, E Patchen Dellinger, MD, Therese M Duane, MD, FACS, FCCM, Heather L Evans, MD, MS, FACS, Pamela A Lipsett, MD, MHPE, FACS, FCCM, John E Mazuski, MD, PhD, Preston R Miller, MD, Patrick J O'Neill, MD, PhD, FACS, Ori D Rotstein, MD, MSc, FRCSC, FACS, Nicholas Namias, MD, MBA,

J Am Coll Surg 2016;222:440-446.

Characteristic	Control group (n = 45)*	Experimental group (n = 67)
Age, y, mean \pm SD	53 ± 16	51 ± 16
Male sex, n (%)	24 (53.3)	37 (55.2)
Race or ethnic group, n (%) [†]		
White	37 (82.2)	54 (80.6)
Black	8 (17.8)	11 (16.4)
Other	0 (0)	2 (3.0)
Characteristic of index infection		
APACHE II score, mean ± SD [‡]	11.2 ± 6.6	11.2 ± 5.9
Maximum WBC, 1000 per mm ³ , median (range)	17.1 (15.2–20.4)	18.5 (15.1-21.6)
Maximum body temperature, °C, mean ± SD	38.5 ± 0.4	38.5 ± 0.4
Organ of origin, n (%)		
Colon or rectum	18 (40.0)	21 (31.3)
Appendix	6 (13.0)	11 (16.4)
Small bowel	4 (8.9)	10 (14.9)
Source-control procedure, n (%)		
Percutaneous drainage	10 (22.2)	23 (34.3)
Resection and anastomosis or closure	13 (28.9)	11 (16.4)
Surgical drainage only	16 (35.6)	19 (28.4)
Resection and proximal diversion	5 (11.1)	10 (14.9)
Simple closure	1 (2.2)	4 (6.0)
Surgical drainage and diversion	0 (0)	0 (0)

Guidelines for management of intra-abdominal infections

Philippe Montravers ^{a,*}, Hervé Dupont ^b, Marc Leone ^c, Jean-Michel Constantin ^d, Paul-Michel Mertes ^e, and the Société française d'anesthésie et de réanimation (Sfar), Société de réanimation de langue française (SRLF), Pierre-Francois Laterre ^f, Benoit Misset ^g, Société de pathologie infectieuse de langue française (SPILF), Jean-Pierre Bru ^h, Rémy Gauzit ⁱ, Albert Sotto ^j, Association française de chirurgie (AFC), Cecile Brigand ^k, Antoine Hamy ^l, Société française de chirurgie digestive (SFCD), Jean-Jacques Tuech ^m

Anaesth Crit Care Pain Med 34 (2015) 117-130

R11 – Empirical antibiotic therapy protocols for communityacquired IAI must be established on the basis of regular analysis of national and regional microbiological data in order to quantify and monitor the course of microbial resistance in the community.

(Grade 1+) STRONG agreement

Rationale: In view of the potential difficulty of selecting appropriate anti-infective therapy, local and regional antibiotic therapy protocols must be established on the basis of the community origin, patient characteristics (comorbidities), clinical severity, presence of documented beta-lactam allergy and by taking local bacterial resistance data into account [7,26–28]. These protocols must be elaborated by multidisciplinary teams (anaesthetists-intensive care physicians, microbiologists, surgeons, infectious disease specialists and pharmacists).

Patients with Complicated Intra-Abdominal Infection Presenting with Sepsis Do Not Require Longer Duration of Antimicrobial Therapy

Rishi Rattan, MD, Casey J Allen, MD, Robert G Sawyer, MD, Reza Askari, MD, Kaysie L Banton, MD, Jeffrey A Claridge, MD, MS, FACS, Christine S Cocanour, MD, FACS, FCCM, Raul Coimbra, MD, PhD, FACS, Charles H Cook, MD, FACS, FCCM, Joseph Cuschieri, MD, FACS, E Patchen Dellinger, MD, Therese M Duane, MD, FACS, FCCM, Heather L Evans, MD, MS, FACS, Pamela A Lipsett, MD, MHPE, FACS, FCCM, John E Mazuski, MD, PhD, Preston R Miller, MD, Patrick J O'Neill, MD, PhD, FACS, Ori D Rotstein, MD, MSc, FRCSC, FACS, Nicholas Namias, MD, MBA, FACS, FCCM

J Am Coll Surg 2016;222:440-446.

Table 2. Primary and Major Secondary Outcomes: As-Treated Analysis

Outcome	Control group (n = 45)	Experimental group $(n = 67)$	p Value
Primary outcome	(12.27)	(
Surgical site infection, n (%)	4 (8.9)	8 (11.9)	0.759
Recurrent intra-abdominal infection, n (%)	6 (13.3)	8 (11.9)	1.000
Death, n (%)	0 (0)	1 (1.5)	1.000
Time to event, days after index source-control procedure			
Diagnosis of surgical site infection, mean ± SD	21.3 ± 6.1	6.9 ± 3.5	< 0.001
Diagnosis of recurrent intra-abdominal infection, mean \pm SD	18.0 ± 8.1	12.5 ± 6.6	0.185
Death, median (range)	_	7.0 (7.0-7.0)	_
Secondary outcome			
Surgical site infection with resistant pathogen, n (%)	0 (0)	2 (3.0)	0.515
Recurrent intra-abdominal infection with resistant pathogen, n (%)	1 (2.2)	0 (0)	0.402
Any extra-abdominal infection, n (%)	3 (6.7)	7 (10.4)	0.523
Clostridium difficile infection, n (%)	0 (0)	0 (0)	1.000
Duration of outcome, d, mean \pm SD			
Antimicrobial therapy for index infection	7.2 ± 2.5	4.4 ± 0.6	< 0.001
Antimicrobial-free days at 30 d	21.3 ± 3.9	23.6 ± 4.9	0.009
Hospitalization after index procedure	9.0 ± 7.5	7.4 ± 5.5	0.227
Hospital-free days at 30 d	20.6 ± 7.0	21.6 ± 6.4	0.436

CrossMark

The Surgical Infection Society Revised Guidelines on the Management of Intra-Abdominal Infection

SURGICAL INFECTIONS Volume 18, Number 1, 2017 Mary Ann Liebert, Inc.

TABLE 6. FACTORS POTENTIALLY IDENTIFYING PATIENTS WITH INTRA-ABDOMINAL INFECTION AT HIGHER RISK

Phenotypic/physiologic risk factors

Advanced age (≥70 y)

Malignancy

Significant cardiovascular compromise

Significant liver disease or cirrhosis

Significant renal disease

Hypoalbuminemia

Extent of infection/adequacy of initial source control

Diffuse, generalized peritonitis

Elevated MPI score

Delayed initial source control

Inability to achieve adequate source control

Microbiologic characteristics

Suspected infection with resistant pathogens

MPI=Mannheim Peritonitis Index.

Table 7. Criteria for Healthcare- or Hospital-Acquired Intra-Abdominal Infection

Infection developing greater than 48 h after initial source control.

Hospitalized for greater than 48 h during current admission or within the previous 90 d.

Residence in a skilled nursing or other long-term care facility within the previous 30 d.

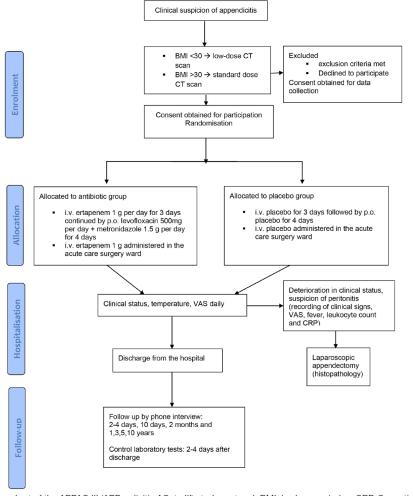
Home infusion therapy, home wound care, or dialysis within the preceding 30 d.

Use of broad-spectrum antimicrobial therapy for 5 d or more during the preceding 90 d.

Inadequate Source Control and Inappropriate Antibiotics are Key Determinants of Mortality in Patients with Intra-Abdominal Sepsis and Associated Bacteremia

SURGICAL INFECTIONS Volume 16, Number 6, 2015

Table 9. Multivariate Logistic Regression Analysis


Variable	AOR, 95% CI	p
Inadequate source control Inappropriate antibiotics APACHE II score (1 point increments)	7.46, 2.08–26.32 3.86, 1.28–11.64 0.93, 0.87– 1.01	0.002 0.016 0.084

Hosmer-Lemeshow p=0.943, AUROC=0.776.

AOR = adjusted odds ratio; CI = confidence interval; APACHE = Acute Physiology and Chronic Health Evaluation.

Open access Protocol

BMJ Open A randomised placebo-controlled

BMJ Open 2018;8:e023623.

öm,⁵

ninen^{1,2}

Figure 1 Flow chart of the APPAC III (APPendicitis ACuta III) study protocol. BMI, body mass index; CRP, C reactive protein; i.v.. intravenous: p.o.. orally: VAS. Visual Analogue Scale.

Short-course antimicrobial treatment for acute cholangitis with Gram-negative bacillary bacteremia[☆]

Shunsuke Uno^{a,*}, Ryota Hase^b, Masayoshi Kobayashi^c, Toshiyasu Shiratori^c, So Nakaji^c, Nobuto Hirata^c, Naoto Hosokawa^b

International Journal of Infectious Diseases 55 (2017) 81-85

Table 2
Summary of patient demographic and clinical characteristics and treatments provided.

	Before May 2013 (n = 40)	After May 2013 (n = 52)	<i>p</i> -Value
Age, years			
$Mean \pm SD$	$\textbf{81.7} \pm \textbf{7.95}$	$\textbf{76.0} \pm \textbf{11.1}$	0.007^{a}
Median (range)	83.5 (56-92)	76 (46-98)	
Sex, male, n (%)	23 (57.5)	35 (67.3)	0.227 ^b
Community-acquired, n (%)	37 (92.5)	51 (98.1)	0.217 ^b
History of acute cholangitis, n (%)	7 (17.5)	13 (25.0)	0.273 ^b
Diagnosis according to TG13 criteria			
Definite	34 (85.0)	49 (94.2)	
Suspected	6 (15.0)	3 (5.8)	
Severity grading defined in TG13, n (%)			0.138 ^c
Grade I (mild)	15 (37.5)	27 (51.9)	
Grade II (moderate)	13 (32.5)	15 (28.8)	
Grade III (severe)	12 (30.0)	10 (19.2)	
Pitt bacteremia score, median (IQR)	1 (0-2)	0.5 (0-2)	0.953 ^c
Charlson comorbidity index, median (IQR)	2 (0-3)	1 (0-3)	0.533 ^c

Table 3 Study outcomes.

	Before May 2013 (n = 40)	After May 2013 (n=52)	<i>p</i> -Value
Treatment duration, median days (IQR)	14.5 (14-15)	10.0 (7.25-12.75)	<0.001a
Hospital length of stay, median days (IQR)	17.5 (16-22.5)	14.0 (10.0-17.0)	$< 0.001^{a}$
30-day mortality rate, n/n (%)	2/35 (5.7)	0/47 (0.0)	0.179 ^b
Recurrence rate within 3 months, n/n (%)	4/30 (13.3)	0/37 (0.0)	0.036 ^b

Short-course antimicrobial treatment for acute cholangitis with Gram-negative bacillary bacteremia [☆]

Shunsuke Uno^{a,*}, Ryota Hase^b, Masayoshi Kobayashi^c, Toshiyasu Shiratori^c, So Nakaji^c, Nobuto Hirata^c, Naoto Hosokawa^b

International Journal of Infectious Diseases 55 (2017) 81-85

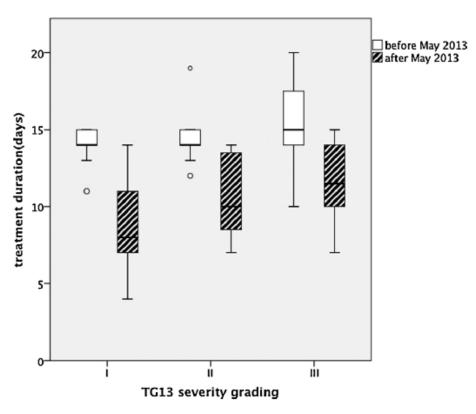


Figure 2. Comparison of treatment duration.

Therapeutic management of peritonitis: a comprehensive guide for intensivists

P. Montravers^{1*}, S. Blot^{2,10}, G. Dimopoulos³, C. Eckmann⁴, P. Eggimann⁵, X. Guirao⁶, J. A. Paiva^{7,11}, G. Sganga⁸ and J. De Waele⁹

Intensive Care Med (2016) 42:1234–1247 DOI 10.1007/s00134-016-4307-6

Table 3 Surgical and non-surgical infectious complications in patients with diffuse secondary peritonitis

Complications	Clinical setting	Frequency	Treatment
Severe bleeding	Haemodynamic instability	++	Reoperation, bleeding control
	Significant blood loss		
SSI (superficial/deep)	Putrid wound secretion	+++	Incision and drainage
SSI (organ space)	Faecal wound secretion	++	Relaparotomy, source control, open wound therapy
Dehiscence of abdominal fascia	Fascia necrosis/abdominal compartment syndrome	+	Relaparotomy, mesh implant/open abdomen/ negative pressure therapy
Intra-abdominal abscess	Evidence on imaging (CT, US)	+/++	CT-guided drainage
Anastomotic leakage	Evidence on imaging, drain fluid	+/++	Relaparotomy, source control/drainage
Rectal stump insufficiency	Putrid anal secretion following Hartmann procedure	(+)	Transrectal drainage, negative pressure therapy
Rupture of stoma	Stool in soft tissue around stoma	(+)	Reoperation, reinsertion of stoma
Tertiary peritonitis	Persistent abdominal infection despite adequate	+	Antibiotic and/or antifungal treatment
	source control		Source control sufficient?
Septic shock	Haemodynamic instability	++	Haemodynamic stabilization, anti-infective treat- ment
			Diagnostic investigations for source of infection
Pneumonia	Respiratory insufficiency, unplanned (re)intubation	+++	Antibiotic therapy
Urinary tract infection (UTI)	Lower UTI or pyelonephritis	+	Antibiotic therapy, source control

(+) very rare (<1 %), + rare (1-5 %), ++ common (5-10 %), +++ very common (>10 %)

Therapeutic management of peritonitis: a comprehensive guide for intensivists

P. Montravers^{1*}, S. Blot^{2,10}, G. Dimopoulos³, C. Eckmann⁴, P. Eggimann⁵, X. Guirao⁶, J. A. Paiva^{7,11}, G. Sganga⁸ and J. De Waele⁹

Intensive Care Med (2016) 42:1234–1247 DOI 10.1007/s00134-016-4307-6

Table 4 Potential pathogens in peritonitis

Microorganism	Predisposing clinical condition requiring coverage beyond standard first-line antimicrobial therapy	Resistance considerations
Gram-positive bacteria		
Streptococci	None. Covered by first-line antibiotic regimen	No clinically relevant resistance problem
Enterococci	Septic shock, failure of early surgical source control, recent antibiotic exposure (particularly prolonged cephalosporin treatment), immunosuppression and prosthetic heart valves	Resistance likely in healthcare-associated infections, especially when caused by <i>E. faecium</i> . Ampicillin resistance and associated production of beta-lactamases are a concern in some geographical areas, as well as glycopeptide resistance
Coagulase-negative staphylococci	Clinical relevance uncertain	Methicillin-resistance likely in healthcare-associated infection
Staphylococcus aureus	None. Methicillin-susceptible <i>S. aureus</i> is covered by first-line antibiotic regimen	Methicillin-resistance possible in healthcare-associated infection
Gram-negative bacteria		
Enterobacteriaceae (Escherichia coli, Enterobacter spp., Klebsiella spp., Serratia spp., Proteus spp., etc.)	None. Non-extended-spectrum beta-lactamase (ESBL)-produc- ing strains are covered by first-line antibiotic regimen	ESBL-producing strains likely in healthcare-associated infection and should be considered in patients with a history of recent travel in regions with high prevalence (Egypt, Thailand, India). Fluoroquinolone-resistance of <i>E. coli</i> may be as high as 20 % in some geographical areas
Non-fermenting Gram-negative bacteria (<i>Pseudomonas</i> aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, etc.)	Healthcare-associated infection, especially with length of hospital stay >5 days. Recent antibiotic exposure. Chronic underlying diseases leading to immunocompromised status (e.g. due to corticosteroid use)	Multidrug resistance most likely in healthcare-associated infection
Anaerobe bacteria (Bacteroides fragilis, Clostridium spp., etc.)	None. Covered by first-line antibiotic regimen	High rates of resistance to clindamycin and cefoxitin in certain geographical areas. Resistance to metronidazole is rare
Candida spp.	Immunodeficiency and prolonged antibiotic exposure. Tertiary peritonitis following failure of source control, especially in peritonitis originating from upper GI tract perforation	Selection towards <i>Candida</i> non-albicans spp. with dose-dependent susceptibility to fluconazole in patients with prior fluconazole exposure

Therapeutic management of peritonitis: a comprehensive guide for intensivists

P. Montravers^{1*}, S. Blot^{2,10}, G. Dimopoulos³, C. Eckmann⁴, P. Eggimann⁵, X. Guirao⁶, J. A. Paiva^{7,11}, G. Sganga⁸ and J. De Waele⁹

Intensive Care Med (2016) 42:1234–1247 DOI 10.1007/s00134-016-4307-6

Table 5 Empirical antibiotic regimens proposed in recent guidelines for community-acquired and healthcare-associated infections

Expert groups	Community-acquired peritonitis		Healthcare-associated peritonitis	
	Mild to moderate cases	Severe or at-risk cases	Mild to moderate cases	Severe or at-risk cases
2006—Belgium [42]			Piperacillin/tazobactam or carbapenems Allergy to β -lactams:fluoroquinolones or aztreonam $+$ metronidazole \pm vancomycin	
2009—Spain [41]	Amoxicillin/clavulanate, ceftriaxone or cefotaxime + metronidazole, ertapenem In case of β-lactams allergy: gentamicin or aztreonam + metronidazole, tigecycline For suspected MDR Enterobacteriaceae ertapenem or tigecycline	Piperacillin/tazobactam or imipenem, meropenem or tigecycline (+ antipseu- domonal drug in case of septic shock) In case of β-lactam allergy: tigecycline	Piperacillin/tazobactam or imipenem, meropenem or tigecycline daptomycin or glycopeptide In case of β-lactam allergy: tigecycline Tigecycline + ceftazidime or amikacin	
2009—USA [8]	Monotherapy: cefoxitin, ertapenem, moxifloxacin, tigecycline or ticarcillin/ clavulanate Combination therapy: cefazolin, cefurox- ime, ceftriaxone, cefotaxime, ciprofloxa- cin or levofloxacin + metronidazole	Monotherapy: imipenem, meropenem, doripenem or piperacillin/tazobactam Combination therapy: cefepime, ceftazidime, ciprofloxacin, or levofloxa- cin + metronidazole	Piperacillin/tazobactam or imipenem, meropenem ± aminoglycoside Ceftazidime or cefepime + metronidazole ± aminoglycoside MRSA infection: vancomycin	
2010—Canada [7]	Mild to moderate cases: monotherapy: cefoxitin, amoxicillin/clavulanate, ticarcillin/clavulanate, ertapenem, moxifloxacin, tigecycline Combination therapy: cefuroxime, ceftriaxone, cefotaxime or ciprofloxacin + metronidazole	Piperacillin/tazobactam or Imipenem or meropenem ± aminogly- coside ceftazidime or cefepime or ciprofloxa- cin + metronidazole tigecydine + ciprofloxacin	Piperacillin/tazobactam or imipenem or meropenem ± aminoglycoside Ceftazidime or cefepime or diprofloxacin + metronidazole Tigecycline + ciprofloxacin MRSA or enterococcal infections: vancomycin or linezolid or daptomycin or tigecy- cline	
2013—International [5]	Amoxicillin/clavulanate, ciprofloxa- cin + metronidazole At risk of ESBL infection: ertapenem or tigecycline Biliary tract infections and at risk of ESBL infection: tigecycline	Piperacillin/tazobactam At risk of ESBL infection: imipenem or meropenem Biliary tract infections: piperacillin/tazobactam Biliary tract infections and at risk of ESBL infection: piperacillin + tigecycline	Piperacillin + tigecydine Imipenem or meropenem + teicoplanin	
2015—France [10]	Amoxicillin/clavulanate + gentamicin or cefotaxime/ceftriaxone + metroni- dazole In case of β-lactams allergy: levofloxa- cin + gentamicin + metronidazole, or tigecycline	Piperacillin/tazobactam + gentamicin	Piperacillin/tazobactam + amika- cin ± vancomycin Allergy to β-lactams: ciprofloxacin or aztreonam + amikacin + metronida- zole + vancomycin Or tigecycline + ciprofloxacin	Severe cases or patients at risk of MDR bac- teria Imipenem or meropenem 士 amika- cin 士 vancomycin

Regional differences?

Tissue penetration?

Table 9 Biliary penetration ability of the most common antibiotics

Good penetration efficiency	Low penetration efficiency
Piperacillin/tazobactam	Ceftriaxone
Tigecycline	Cefotaxime
Amoxicillin/clavulanate	Meropenem
Ciprofloxacin	Ceftazidime
Ampicillin/sulbactam	Vancomycin
Cefepime	Amikacin
Levofloxacin	Gentamicin

Severe acute pancreatitis

Quinolones ? Carbapenems ?

Statement (type of antibiotics)

- In patients with infected necrosis, antibiotics known to penetrate pancreatic necrosis should be used (1B).
- 2. In patients with infected necrosis, the spectrum of empirical antibiotic regimen should include both aerobic and anaerobic Gram-negative and Grampositive microorganisms. Routine prophylactic administration of antifungal is not recommended in patients with infected acute pancreatitis, although Candida spp. are common in patients with infected pancreatic necrosis and indicate patients with a higher risk of mortality (1B).

Discussion Aminoglycoside antibiotics (e.g., gentamicin and tobramycin) in standard intravenous dosages fail to penetrate into the pancreas in sufficient tissue concentrations to cover the minimal inhibitory concentration (MIC) of the bacteria that are commonly found in secondary pancreatic infections [71].

Acylureidopenicillins and third-generation cephalosporins have an intermediate penetration into pancreas tissue and are effective against gram-negative microorganisms and can cover the MIC for most gramnegative organisms found in pancreatic infections [72]. Among these antibiotics, only piperacillin/tazobactam is effective against gram-positive bacteria and anaerobes.

Quinolones (ciprofloxacin and moxifloxacin) and carbapenems both show good tissue penetration into the pancreas the additional benefit of excellent anaerobic coverage [73–76]. However, because of quinolones high rate of resistance worldwide, quinolones should be discouraged and used only in patients with allergy to betalactam agents. Carbapenems due to the spread of carbapenem resistant *Klebsiella pneumoniae* should be always optimized and should be used only in very critically ill patients.

Antifungal therapy?

- Not for CA IAI
- Upper GI-tract perforation ?
- Previous antimicrobial therapy?
- Tertiary IAI ?
- Septic shock in tertiary IAI?
- Azoles or Echinocadins?

Matteo Bassetti Monia Marchetti Arunaloke Chakrabarti Sergio Colizza Jose Garnacho-Montero

A research agenda on the management of intra-abdominal candidiasis: results from a consensus of multinational experts

Intensive Care Med (2013) 39:2092–2106 DOI 10.1007/s00134-013-3109-3

Table 2 Risk factors for intra-abdominal Candida infection

Risk factor	Notes	References
1. Specific		
Recurrent abdominal surgery	Laparoscopies included	[33]
GI tract perforations	Recurrent perforations and/or perforations untreated within 24 h ^a	[17]
Gastrointestinal anastomosis leakage	More severe if the leakage is in the upper GI tract ^b	[2, 3, 17, 31]
Multifocal	11	
colonization by		
Candida spp.		
2. Additional nonspecific		500 011
Acute renal failure,		[20, 31]
central venous		
catheter placement, total parenteral		
nutrition, ICU stay,		
severity of sepsis,		
diabetes and		
immunosuppression,		
prolonged broad-		
spectrum		
antibacterial therapy		

^a Surgical control of upper gastrointestinal perforations is more problematic [65]

Recommendation

In patients with recent abdominal surgery and recurrent gastrointestinal perforation or anastomotic leakage, prophylaxis with fluconazole should be considered (BI); an echinocandin should be considered if there is a high likelihood of azole resistance (CII).

Recommendations

- Fungicidal agents such as echinocandins or lipid formulations of amphotericin B should be used for targeted therapy of all critically ill patients or for patients with previous exposure to azoles (BII).
- 2. In this setting, the presence of organ failures should lead to the choice of the drug (BIII).
- 3. For the subgroup of patients infected with *C. parapsilosis*, lipid formulations of amphotericin B or fluconazole should be preferred (BII).
- 4. Azoles can be used for targeted therapy of noncritically ill patients with IAC due to susceptible strain(s) (BII).
- 5. Amphotericin B deoxycholate should not be used due to its well-documented significant toxicity (DII).

^b Gastroduodenal surgery, in particular that involving the esophagus

Conclusions